
Measure Theory

Riley Moriss

June 6, 2023



2



Contents

1 Lebesgue Measure 5
1.1 Measureable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Outer Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Approximation of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Littlewood Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 Non-Measurable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Measureable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Approximation of Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Reimann Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 General Measures 11
2.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Outer Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Metric Outer Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Approximating Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Integration Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Extension Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Product Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Signed Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Hahn Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.3 Jordan Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.4 Lebesgue Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Differentiating Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.1 Covering Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.2 Differentiation of Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.3 Anti-Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



4 CONTENTS



Chapter 1

Lebesgue Measure

I omit the theorems that will be put into a more general setting later.
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6 CHAPTER 1. LEBESGUE MEASURE

Measureable Sets

Cubes
A closed rectangle in Rd is simply a set of the form

R = [a1, b1] × ... × [ad, bd]

with volume
|R| = (b1 − a1) × ... × (bd − ad)

Two rectangles are almost disjoint if their interior are disjoint (agree on a zero set of measure zero).

Lemma. Given a rectangle R, that is the union of a finite collection of almost pairwise disjoint rectangles {Ri} we have
that

|R| =
∑
|Ri|

proof

Moreover if they are not pairwise disjoint we have

|R| ≤
∑
|Ri|

Theorem. Every open subset U of Rcan be written uniquely as a countable union of pairwise disjoint open intervals
proof

Theorem. Every open subset U of Rd can be written as the countable union of pairwise almost disjoint closed cubes
proof

Outer Measure
The Lebesgue outer measure is definied on any subset of Rd by

m∗(E) = inf

∑
i∈N

|Qi| : {Qi} is a countale cover of closed cubes of E


Lemma. For any ϵ there is a covering of E by closed cubes {Qi} such that∑

|Qi| ≤ m∗(E) + ϵ

This outer measure is monotone. Countable subadditivity.

Cantor Set Let C0 = [1, 0] then C1 = [0, 1/3] ∪ [2/3, 1] is removing the middle open third interval of C0.
Continue indefinitely. Then the cantor set is

C = ∩kCk

Cantor set is closed, with empty interior. C is totally disconnected. It is uncountable.

C = [0, 1] \
⋃
n∈N

3n−1⋃
k=0

(
3k + 1
3n+1 ,

3k + 2
3n+1 ) =

⋂
n∈N

3n−1⋃
k=0

[
3k
3n ,

3k + 1
3n ] ∪ [

3k + 2
3n ,

3k + 3
3n ]

Lemma.
m∗(E) = inf{m∗(U) : E ⊆ U U is open }

Lemma. If E1, E2 are subsets with some non-zero distance between them (inf over the distances between all the points
in the set) then

m∗(E1 ∪ E2) = m∗(E1) + m∗(E2)
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Lemma. If E is the union of a countable collection of pariwise almost disjoint cubes {Qi} then

m∗(E) =
∑
|Qi|

proof

A subset E ⊆ Rd is Lebesgue measurable iff for every ϵ > 0 there is an open subset E ⊆ U such that

m∗(U \ E) ≤ ϵ

The Lebesgue measure of a Lebesgue measurabel set is defined to be the Lebesgue outer measure of the set.

m(E) = m∗(E)

Lemma. Lebesgue measure is complete. i.e. Subsets of sets with measure zero are measurable and have measure zero
proof

The collection of measurable sets is a σ−Algebra.
proofThe smallest σ−Algebra containing all open sets is called the Borel σ−Algebra.

Lebesgue measure is countably additive. proof

Approximation of Sets
Lemma. Every open subset is measurable. Every closed subset is measurable.

proof

Definition: Given a countable collection of of subsets of Rd {En} then we say

• En ↗ E iff En ⊆ En+1 and E = ∪En

• En ↘ E iff En+1 ⊆ En and E = ∪En

And the Lebesgue measure is continuous as a general one is. proof

Recall that
E

i
F = (E \ F) ∪ (F \ E)

Lemma. For every ϵ > 0 and a measurable set E

• There is a closed set F F ⊆ E with m(E \ F) < ϵ

• If m(E) < ∞ then there is a compact set K such that K ⊆ E with m(E \ K) < ϵ

• If m(E) < ∞ then there is a finite unino of closed cubes F = ∪N
k=1Qk such that m(E

a
F) < ϵ

proof

Littlewood Principles
1. Every measurable set is nearly a finite union of intervals

2. Every measurable function is nearly continuous

3. Every convergent sequence of measurable functions is nearly uniformely convergent

We have seen the first earlier.

Theorem. Let E be measurable with m(E) < ∞ and f : E → R measurable. Then for any ϵ > 0 there exists a closed
set F such that F ⊆ E and m(E \ F) ≤ ϵ and

f |F is continuous
proof

Ergorovs theorem is the third principle.

Non-Measurable Sets
construction of non-measurable sets
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Measureable Functions
Measurable functions f : Rd → R are those where the preimae of galf lines are measurable. It doesnt matter if they are
open , closed or upwards or downwards.prrof

Lemma. f is measurable iff the preimage of opens is measurable iff preimage of closed is measurable
proof

note that powers, sums, products, quotients (where non-zero), and scalar multiples of measurable functions are
all measurable. Moreover (point wise) limits, liminf, limsup, inf and sups of sequences of measurable functions are all
measurable.proof

Lemma. If f is measurable and g = f a.e. then g is measurable.
proof
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Integration

Approximation of Measurable Functions
All the same as those of the general section. Theorems of linearity, monotonicity, dominated convergence, monotone
convergence, integrable implies finite a.e., triagnle inequality, bounded convergence theorem, Riemann and Lebesgue
integral match, interchanging sums, Fatou

Lemma (Borel-Cantelli). {Ek} countable collection of measurable sets such that
∑

m(Ek) < ∞ then

m({x : x ∈ Ek for infinitely many k }) = 0

‘ proof

Lemma. Let f be integrable

• For every ϵ > 0 there is a ball B ∫
Rd\B
| f | < ϵ

• (Absolutely Continuity) For every ϵ > 0 there is a δ > 0 such that

m(E) < δ =⇒
∫

E
| f | < ϵ

proof

Reimann Integral
section on their equality
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Chapter 2

General Measures

Definition: A σ-Algebra on a set X is someA ⊆ P(X) such that

• ∅ ∈ A and X ∈ A

• Closed under compliments
E ∈ A =⇒ EC ∈ A

• Closed under countable unions
{En}n∈N ⊆ A =⇒ ⋓n∈NEn ∈ A

A set and a sigma algebra are known as a measurable space.

11
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Measures

Definition: Given a measure space (X,A) then a function µ : A → [0,∞] is a measure iff

• µ(∅) = 0

• If {En}n∈N are pairwise disjoint sets inA then

µ

⋃
n∈N

En

 =∑
n∈N

µ(En)

A measurable space, (X, A), with a measure, µ, is called a measure space (X, A, µ).

Definition: A measure space (X, A, µ) is sigma finite (σ-finite) if there is a countable collection {En} ⊆ A such
that X = ∪En and for every n we have µ(En) < ∞.

Definition: A measure space (X, A, µ) is complete iff for every E ∈ A with measure zero we have for every
F ⊆ E F is both measurable and µ(F) = 0.

Every subset of measure zero set is measurable and has measure zero. The Lebesgue measure is complete, the comple-
tion of the Borel measure infact.

Measures have the following properties:

• Monotonicity
E ⊆ F =⇒ µ(E) ≤ µ(F)

• Countable Subadditivity

µ

⋃
n∈N

En

 ≤∑
n∈N

µ(En)

• Given a collection {En}n∈N of measurable sets we have that

En ↗ E =⇒ µ(E) = lim
n→∞
µ(En)

En ↘ E ∧ ∃n µ(En) < ∞ =⇒ µ(E) = lim
n→∞
µ(En)

Outer Measures

Definition: Given a set X, function µ∗ : P → [0,∞] is called an outer measure if

• µ(∅) = 0

• Monotonicity
E ⊆ F =⇒ µ∗(E) ≤ µ∗(F)

• If {En}n∈N are sets in S then

µ∗
⋃

n∈N

En

 ≤∑
n∈N

µ∗(En)

Given an arbitrary outer measure we get the sigma algebra of Caratheodory measurable sets given by

CX = {E ∈ P(X) : ∀A ∈ P(X) µ∗(A) = µ∗(A ∩ E) + µ∗(A \ E)}

Note that this is precisely when the disjoint sets A ∩ E and A \ E are additive.
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Theorem. Given a set X and an outer measure µ∗ then the set CX of Caratheodory measureable sets is a σ-algebra
moreover µ = µ∗|CX is a complete measure on this σ-algebra

Proof. It is clear that X, ∅ ∈ CX .

Step 0: Compliments

Let E ∈ CX then
µ∗(A) = µ∗(A ∩ E) + µ∗(A \ E)

= µ∗(A ∩ E) + µ∗(A ∩ EC)

= µ∗(A ∩ EC) + µ∗(A \ (EC)C)

= µ∗(A ∩ EC) + µ∗(A \ E)

Step 1: Finite Unions:

Let E, F ∈ CX and A ⊆ X arbitrary. Then

µ∗(A) = µ∗(F ∩ A) + µ∗(FC ∩ A)

= µ∗(E ∩ F ∩ A) + µ∗(EC ∩ F ∩ A) + µ∗(E ∩ FC ∩ A) + µ∗(EC ∩ FC ∩ A) (measurability of E)

≥ µ∗(((E ∩ F) ∪ (E ∩ FC) ∪ (EC ∩ F)) ∩ A) + µ∗((E ∪ F)C ∩ A) (Demorgans law, subadditivity)

= µ∗((E ∪ F) ∩ A) + µ∗((E ∪ F)C ∩ A)

and
µ∗(A) = µ∗(A ∩ (E ∪ F) ∪ A ∩ (E ∪ F)C)

≤ µ∗(A ∩ (E ∪ F)) + µ∗(A ∩ (E ∪ F)C) (subadditivity)

hence
µ∗(A) = µ∗(A ∩ (E ∪ F)) + µ∗(A ∩ (E ∪ F)C)

and the union is therefore measurable.

Step 2: Countable Unions of Disjoint Sets:

Let {Ek} be a countable collection of pairwise disjoint Caratheodory measurable sets. Then let

Gn =

n⋃
i=1

Ei

and we have that
Gn ↗ G =

⋃
i∈N

Ei

And each Gn is measurable by step 1.
Now because En is measurable we have

µ∗(Gn ∩ A) = µ∗(En ∩Gn ∩ A) + µ∗(EC
n ∩Gn ∩ A)

= µ∗(En ∩ A) + µ∗(Gn−1 ∩ A)

=

n∑
k=1

µ∗(Ek ∩ A)

Where the second equality is from disjointness and the third is from induction.
Now GC ⊆ GC

n (for any n) hence by subadditivity of outer-measures

n∑
k=1

µ∗(Ek ∩ A) + µ∗(GC ∩ A) ≤ µ∗(A)
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This is for any n and hence holds in the limit

µ∗(G ∩ A) + µ∗(GC ∩ A) ≤
∞∑

k=1

µ∗(Ek ∩ A) + µ∗(GC ∩ A) ≤ µ∗(A)

And just as in the finite case the reverse inequality is immediate hence G is measurable.

Step 3: Countable Unions:

Follows immediately from step 2 by disjointifying the sequence.

Showing µ is a complete measure:

From the axioms of an outer measure all we need to show is that the restriction of µ∗ to Caratheodory measurable
sets is additive on disjoint sets. So let {Ek} be a sequence of pairwise disjoint measurable sets. Using the calculation
from finite unions and setting A to be Ei ∪ E j we get

µ(Ei ∪ E j) = µ(Ei ∩ (Ei ∪ E j)) + µ(EC
i ∩ (Ei ∪ E j)) = µ(Ei) + µ(E j)

And the calculuation from pairwise disjoint sets setting A = G = ∪Ek gives

n∑
k=1

µ∗(Ek ∩G) + µ∗(GC ∩G) ≤ µ∗(G)

=⇒

n∑
k=1

µ(Ek) ≤ µ(∪Ek) ≤
n∑

k=1

µ(Ek)

For any n hence in the limit. So µ is in fact a measure.
Finally we show completeness. Assume E is measurable with µ(E) = 0 and F ⊆ E. Then for any A

F ⊆ E

F ∩ A ⊆ E ∩ A ⊆ E

=⇒ µ∗(F ∩ A) ≤ µ∗(E ∩ A) ≤ µ∗(E) = 0

Moreover A ∩ B ⊆ A so we get

µ∗(A ∩ FC) ≤ µ∗(A) = µ∗((A ∩ FC) ∪ (A ∩ F)) ≤ µ∗(A ∩ FC) + µ∗(A ∩ F) = µ∗(A ∩ FC)

Hence F is measurable and moreover it has measure zero (set A = F)

Metric Outer Measures
On a metric space the topology is generated by the balls. There is then a unique smallest sigma algebra generated on
this topology, which we call the Borel sigma algebra on the metric space. A measure on a metric space with the Borel
sigma algebra is called a Borel measure.

Recall that in a metric (X, d) space there is a natural way to extend the metric to subsets of X by

d(A, B) = in f {d(x, y) : x ∈ A, y ∈ B}

Definition: An outer measure is a metric outermeasrue iff whenever d(A, B) > 0 we have

µ∗(A ∪ B) = µ∗(A) + µ∗(B)

In particular the Lebesgue outer measure is a metric outer measure.

Theorem. Given a metric outer measure, µ∗ on (X, d), the Borel sets are Caratheodory measurable.
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Proof. The Borel sets are generated by closed ( or open sets) hence it will suffice to show that all closed
subsets of X are measurable. Moreover because the reverse inequality is immediate from subadditivity it suffices to
show that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ EC)

We can assume WLOG that µ∗(A) < ∞ (otherwise it is trivial).
Let A be given (with finite outer measure) and let E be closed, then set An = {x ∈ A : d(x, E) ≥ 1

n }. Note that
the sequence {An} is increasing (An ⊆ An+1) and A \ E = ∪An; this follows because E is closed (when E is does not
contain all its limit points then the left hand side will contain the limit points while the right hand side will not).
Then

d(A ∩ E, An) ≥
1
n

=⇒ µ∗(A) ≥ µ∗((A ∩ E) ∪ An) = µ∗(A ∩ E) + µ∗(An)

Using the fact that µ∗ is a metric outer measure and (A ∩ E) ∪ An ⊆ A by definition.
So if we can show that µ∗(An) approaches µ∗(A ∩ EC) we are done.
Set Bn = An+1 \ An (small anuli appraching the boundary of E), notice that if x ∈ An and y ∈ Bn+1 we have

d(x, E) ≥ 1/n and d(y, E) ≥ 1/(n + 1). Hence

1
n
≤ d(x, E) ≤ d(x, y) + d(y, E) ≤ d(x, y) +

1
n + 1

Thus because x and y are arbitrary

d(Bn+1, An) ≥
1
n
−

1
n + 1

µ∗ is a metric outer measure so we get

µ∗(A2k+1) ≥ µ∗(B2k ∪ Ask−1) = µ∗(B2k) + µ∗(A2k−1)

Hence by a similar induciton to earlier

µ∗(A2k+1) ≥
k∑

j=1

µ∗(B2 j)

Similarly

µ∗(A2k) ≥
k∑

j=1

µ∗(B2 j−1)

By the finiteness of the measure of A both of these sums converge. Now apply monotonicity and subadditivity gives

µ∗(An) ≤ µ∗(A \ E) ≤ µ∗(An) +
∞∑

k=n+1

µ∗(Bk)

And because the sum is convergent the tails must go to zero so we get that

µ∗(An) ≤ µ∗(A \ E) ≤ µ∗(An)

And we are done.

Theorem. Given a metric space X with a Borel measure µ such that for any x ∈ X, r ∈ R+ we have µ(Br(x)) < ∞.
Then for any Borel set E and any ϵ > 0

• there is an open set U such that E ⊆ U and µ(U \ E) < ϵ

• There is a closed set F such that F ⊆ E and µ(E \ F) < ϵ
proof
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Measurable Functions

Definition: A function between two measurable spaces f : (X, A) → (Y, B) is measurable iff for every b ∈ B
f −1(b) ∈ A. Or the preimage of measurable sets are measurable.

Brian definies measurable functions into R or the extended reals by implicitly giving them the Borel sigma algebra. In
particular if f , g : (X, A)→ (R,B(R)) are measurable then

• If in addition f and g are finite valued then f k, f + g, α f , f g, f /g are measurable

• If { fn}n∈N is a sequence of measurable functions then sup, inf, limsup and liminf are all measurable functions. If
the pointwise limit exists it is measurable

• If (X, A, µ) is complete and h : X → R agrees with f a.e. (there is a measure zero set, such that f=h on its
compliment in X) then h is measurable.

• If A = BX (Borel sigma algebra) then every continuous function is measurable

Approximating Measurable Functions
Fix a measure space (X, A, µ)

Definition: A function ϕ : X → R is simple iff it is measurable and there is some a1, ..., an ∈ R and E1, ..., En ∈ A
such that

ϕ =

n∑
k=1

akχEk

Theorem. If f : X → [−∞,∞] is measurable then

1. If f is non-negative there is an increasing sequence of non-negative simple functions on X {ϕk}k∈N that converge
pointwise to f i.e.

For any x ϕk(x) ≤ ϕk+1(x) and lim
k→∞
ϕk(x) = f (x)

2. There is a sequence of simple functions such that |ϕk(x)| ≤ |ϕk+1(x)| converging pointwise to f.

3. If (X, A, µ) is sigma finite then the above is still true if we add the extra condition that the ϕk are supported on
sets of finite measure.

Proof.

Claim 1:

Let FN : X → R be FN(x) = min( f (x),N). It is clear that FN → f as n→ ∞. Now let

Eℓ,M = {x ∈ X :
ℓ

M
< FN(x) ≤

ℓ + 1
M
}

which makes the following a simple function

FN,M(x) =
NM−1∑

t=0

ℓ

M
χEℓ,M (x)

Then for any k ∈ N we can set N = M = 2k and define ϕk = F2k ,2k .
This is similar to assignment 2.



2.2. MEASURABLE FUNCTIONS 17

Claim 2:

Recall f +(x) = max( f (x), 0) and f −(x) = max(− f (x), 0), and that f = f + − f −. Then notice that they are both
positive and apply part 1 to get two increasing sequences {ϕ+k } → f + and {ϕ−k } → f − finally verify that

ϕk = ϕ
+
k − ϕ

−
k

Claim 3:

We just change the construction in (1) to F′N(x) = χXN FN where X = ∪XN and µ(XN) < ∞ for every N (σ-finite).

Theorem (Egorov). If E is a measurable set with finite measure and { fk}k∈N is a sequence of measureable functions
fk : E → R converging pointwise almost everywhere to f on E, then for any ϵ > 0 there is a measurable set A ⊆ E such
that m(E \ A) < ϵ and fk → f uniformely on A

Proof. Fix an ϵ and an n ∈ N. Pointwise convergence tells us that for a.e. x there is a k(x) ∈ N such that for
every j > k(x) we have

| f j(x) − f (x)| <
1
n

Define
En

k = {x ∈ E : | f j(x) − f (x)| <
1
n
∀ j > k}

Clearly this forms an increasing sequence in k, and by pointwise convergence a.e. in E we have that

E = N ∪
⋃
k∈N

En
k

where m(N) = m({ points of non-convergence}) = 0. i.e. En
k ∪ N ↗ E hence m(E) = limk→∞ m(En

k ∪ N) =
limk→∞ m(En

k ) (by disjointness of N and all En
k ). Because m(E) < ∞ we know

lim
k→∞

m(E \ En
k ) = lim

k→∞
(m(E) − m(En

k )) = 0

Hence for every n ∈ N we get a kn such that

m(E \ En
kn

) <
1
2n

Now set

Ã =
∞⋂

n=M

En
kn

By countable subadditivity and taking M sufficiently large

m(E \ Ã) ≤
∞∑

n=M

m(E \ En
kn

) ≤
∞∑

n=M

2−n = 21−M < ϵ

It is clear that Ã is measurable (intersection of measurable sets) so if we can show uniform convergence on it
we will be done:

Let δ > 0 be given and select n ∈ N such that 1
n < δ. If x ∈ Ã we have for every j > kn

| f j(x) − f (x)| <
1
n
< δ

Because either n < M in which case
| f j(x) − f (x)| <

1
M
<

1
n
< δ

or n > M in which case x is already in the set satisfying this condition just by definition of Ã intersecting all those
sets.
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Integration
For simplicity assume that (X, A, µ) is a sigma finite measure space. Denote the integral of a measurable function
f : X → R ∫

X
f (x)dµ(x)

When it is not ambigous which variable, domain or measure we are integrating then those symbols will be dropped.
To define integration we follow a four step program

1. Simple functions with finite measure support (using sigma finite)

2. Bounded emasurable function with finite support

3. Non-negative measurable functions

4. Integrable functions

Simple Functions

Take some simple function on X

ϕ =

n∑
k=1

akχEk

then define ∫
X
ϕdµ =

n∑
k=1

akµ(Ek)

One checks that this is well definied and independent of representation for the simple function.

Bounded Measurable Functions

Let f : X → R be a bounded function with a finite measure support. Then we can approximate it by a sequence of
simple functions {ϕk}k∈N that converge to f pointwise a.e. Then define∫

X
f dµ = lim

n→∞

∫
X
ϕndµ

Using Ergorovs theorem we check this is well definied and independent of choice of sequence.

Non-negative Measurable Functions∫
X

f dµ = sup
{∫

X
gdµ : g : X → [0,∞], g is supported on a set of finite measure and 0 ≤ g ≤ f

}

Integrable Functions

Let f : X → R measurable, then f is integrable iff
∫
| f | < ∞. We write f = f + − f − where f + = max{0, f } and

f − = max{0,− f }. Then for integrable f define ∫
f =

∫
f + −

∫
f −

well definedness
of all the inte-
gral definitions
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Integration Theorems
Integrals are linear, additive, monotone and satisfy the triangle inequality.additivity, mono-

tone, triangle
inequality for
integrals

Theorem (Bounded Convergence). Let M ∈ R+ a constant and E be a set of finite measure. If { fn : X → R} is a
sequence of measurable functions that are uniformely bounded by M for all x ∈ X, have support contained in E and
converge p.w. a.e. to f then f is bounded and supported up to a set of measure zero on E. Moreover

lim
n→∞

∫
| fn − f | = 0

hence we can interchange limits.

Proof.
∀x, n fn(x) ≤ M =⇒ lim

n→∞
fn(x) = f (x) ≤ M

Moreover the support of f must agree with the support of fn for all n a.e. It remains only to show that the integral is
zero.

Given an ϵ > 0 we apply Egorovs theorem to obtain a measurable set A ⊆ E such that m(E \A) < ϵ and fn → f
uniformely on A. i.e. there is an N ∈ N such that ∀x ∈ X,∀n > N

| fn(x) − f (x)| < ϵ

Hence for n > N we have ∫
| fn − f | ≤

∫
A
| fn − f | +

∫
E\A
| fn − f |

≤ ϵm(A) + 2Mm(E \ A)
≤ ϵm(E) + 2Mϵ → 0

Where it is important for these calculations to make sense that m(E) < ∞

Lemma (Fatou). { fn} a sequence of non-negative measurable functions on X converging p.w.a.e to f then∫
X

f dµ ≤ limin f
n→∞

∫
X

fndµ

Proof. We take a function g : X → R that is bounded, measurable, supported on a set of finite measure S(g)
and 0 ≤ g ≤ f . Now let gn(x) = min( fn(x), g(x)). Notice that these are also bounded, measurable and supported on
S(g) for every n. Moreover gn → g p.w. so by the Bounded convergence theorem∫

g = lim
n→∞

∫
gn

By monotonicity of integration we also have for every n∫
gn ≤

∫
fn

=⇒

∫
g ≤ lim inf

n→∞

∫
fn

=⇒ sup
{∫

g : g is bounded measurable finite measure support 0 ≤ g ≤ f
}
=

∫
f ≤ lim inf

n→∞

∫
fn

Notice that the lim inf is doing something because the limit may not exists, where the lim inf will.

Theorem (MCT). { fn} a sequence of non-negative measurable functions on X such that fn(x) ≤ f (x) and fn → f
p.w.a.e then ∫

X
f dµ = lim

n→∞

∫
X

fndµ
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Proof. Monotonicity of integrals tells us immediately that

lim sup
n→∞

∫
fn ≤ f

Now applying Fatous lemma we get ∫
f ≤ lim inf

n→∞

∫
fn

strictly the MCT is if fn ↗ f but this is clearly more general.

Theorem (Dominated Convergence). { fn} a sequence of measuable functions converging p.w.a.e. to f on X. If there is
some integrable function g such that | fn(x)| ≤ g(x) a.e. and all n ∈ N then∫

X
f dµ = lim

n→∞

∫
X

fndµ

Proof. Because | fn(x)| ≤ g(x) we know that | f (x)| ≤ g(x) a.e. moreover by monotonicity of the integral both f
and fn are integrable, hence finite a.e.

Now | fn| ≤ g =⇒ fn ≤ g =⇒ g − fn ≥ 0 a.e., likewise for g − f ≥ 0 a.e. moreover

g − fn → g − f

p.w.a.e. thus applying Fatou ∫
(g − f ) ≤ lim inf

n→∞

∫
(g − fn) =

∫
g − lim sup

n→∞

∫
fn

(where passing the inf through the negative makes it a sup), rearranging gives

lim sup
n→∞

∫
fn ≤

∫
f

Applying the same trick we get
g + fn → g + f

where both are non-negative functions hence ∫
f ≤ lim inf

n→∞

∫
fn

Lp Spaces
We define an equivilence relation on measuable functions, by declaring f ∼ g iff f (x) = g(x) a.e. Then we define

Lp(X, A, µ) = {[ f ]∼ : f is measurable and
∫

X
| f |pdµ < ∞}

Lp(X, A, µ) is a Banach space when given the norm

∥ f ∥Lp =

(∫
X
| f |pdµ

) 1
p

For p = ∞ we define L∞(X, A, µ) the space of uniformely bounded a.e. functions with the norm being the inf of all
uniform bounds.

Theorem (Riesz-Fischer). Lp(Ω) is complete.
proof of com-
pleteness of Lp Simple functions, step functions, continuous functions of compact support are all dense in Lp. By taking step

functions over rational coefficients and rational sets we get a countable dense subset (seperable).Proof of the
density of cer-
tain functions in
Lp. Seperable
for general Lp?
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Inequalities
All norms here are Lp for p ∈ [1,∞]

Lemma (Youngs Inequality). Given p ∈ (1,∞) and its conjugation q, then for any a, b ∈ R+

ab ≤
ap

p
+

bq

q

with equality iff ap = bq

Proof. Let g : [1,∞)→ R be given by

g(x) =
1
p

xp +
1
q
− x

(notice that this is the equation for b=1), then

g′(x) = xp−1 − 1 ≥ 0

because x ≥ 1. Notice that g(1) = 0 because p and q are conjugate so

g(x) ≥ 0

or equivilently

x ≤
1
p

xp +
1
q

for x ≥ 1. Notice that equality attains for x = 1. Now let x = ab1−q and multiply both sides by bq to obtain the
inequality. And notice that equality is only for ab1−q = 1 ⇐⇒ ap = bp(q−1) = bq (using conjugacy).

Theorem (Holders). Let p and q be conjugate then for f ∈ Lp, g ∈ Lq then

∥ f g∥L1 ≤ ∥ f ∥Lp∥g∥Lq

Proof.

p = 1: Then q = ∞ and
| f (x)g(x)| ≤ | f (x)|∥g∥L∞

for a.e. x hence the inequality holds by monotonicity and lineararity of the intergral.

1 < p < ∞: It will suffice to prove that if ∥ f ∥p = ∥g∥q = 1 then ∥ f g∥1 ≤ 1. This is because for arbitrary f and
g we can normalise them by dividing by their norms (WLOG they are non-zero becuase the inequality is trivial if
they were).

Apply youngs inquality to a = | f (x)|, b = |g(x)| to get

| f (x)g(x)| ≤
1
p
| f (x)|p +

1
q
|g(x)|q

Then integrate to get ∫
| f (x)g(x)| ≤

1
p

∫
| f (x)|p +

1
q

∫
|g(x)|q =

1
p
+

1
q
= 1

We can also trace the equality condition from Youngs inequality through the argument to arrive at the fact that
equality attains iff c|g(x)|q = | f (x)|p (a.e. x and some c constant).

For an f ∈ Lp \ {0} we define f ∗(x) = | f (x)|p−2 f (x)
∥ f ∥p−1

Lp
.
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Lemma. f ∗ is the unique Lq function such that∫
f f ∗ = ∥ f ∥Lp and ∥ f ∗∥Lq = 1

Proof. The two properties are by direct computation.
For uniqueness: Let g be another function satidfying the hypotheses. Then

∥ f ∥p =
∫

f g ≤
∫
| f g| ≤ ∥ f ∥p∥g∥q = ∥ f ∥p

=⇒ ∥ f ∥p =
∫

f g =
∫
| f g| = ∥ f ∥p∥g∥q

So in particular using our equivilent conditions for equality from Holders above we know that f g ≥ 0 a.e. and
|g(x)|q = c

1
q | f (x)|p−1 for some c a.e.. Hence g = α| f |p−2 f for some α ∈ R+ (because g and f have the same sign by

the first equality, we can peel one of the powers of the absolute value to recover g), which along with the condition
of integrating to one fixes g to be f ∗.

Theorem (Minkowski Inequality).
∥ f + g∥ ≤ ∥ f ∥ + ∥g∥

Proof.

p=1: Immediate using the triangle inequality and linearity of the integral.

1 < p < ∞: WLOG we assume f + g , 0 then

∥ f + g∥p =
∫

( f + g)( f + g)∗

=

∫
f ( f + g)∗ +

∫
g( f + g)∗

≤ ∥ f ∥p∥( f + g)∗∥q + ∥g∥p∥( f + g)∗∥q (Holder)
= ∥ f ∥p + ∥g∥p
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Extension Theorem

Definition: A ring R over a set X is a collection of subsets of X such that

• ∅ ∈ R

• E, F ∈ R =⇒ E \ F ∈ R

• Closed under finite unions

• Closed under finite intersections

An algebra of sets is a Ring that contains X.

Definition: Given a set X and a ring of subsets R then a function µ0 : R→ [0,∞] is a premeasure iff

• µ0(∅) = 0

• Countable additivity of pairwise disjoint sets

Note that this is not a measure yet because R is not a sigma algebra. Also note that it is monotone (follows from
additivity).

Theorem. Given (X,R, µ0) a pre-measure space we can define µ∗ : P(X)→ [0,∞] as

µ∗(E) = inf

∑
n∈N

µ0(E j) : E ⊂
⋃
n∈N

En and E j ∈ R


• µ∗ is an outer measure

• µ∗|R = µ0

• All sets in R are caratheodory measurable (wrt µ∗)

Proof.

Outer Measure: Empty set is clear (its in the ring), monotonicity is clear (covers cover). So we check countable
subadditivity.

Let {En} be a collection of sets in X. We assume WLOG (it is immediate otherwise) that there is a countable
cover of sets in the ring for each En. Then for any ϵ > 0 we can take a cover of En call it E j

n such that∑
j

µ0(E j
n) ≤ µ∗(En) + ϵ/2n

Then summing over n gives

µ∗(∪nEn) ≤
∑
n, j

µ0(E j
n) ≤

∑
n

µ∗(En) + ϵ →
∑

n

µ∗(En)

Agreement on the Ring: Let E ∈ R be arbitrary. It is immediate that µ∗(E) ≤ µ0(E) (it covers itself) so we
have to show the reverse inequality. WLOG we take a pairwise disjoint collection of sets in R, call them {Fk}, that
cover E precisely (a cover exists, because other wise the inequality is trivial, ring axioms allow us to disjointify the
collection and we can just intersect with E). By monotonicity of µ0:

µ0(E) =
∑

k

µ0(Fk) ≤
∑

k

µ0(Fk)

Hence the inf over such sums gives the result.
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Caratheodory Measurable: Let E ∈ R and A ⊆ X be arbitrary. WLOG µ∗(A) < ∞. So take a cover by sets in
the ring {A j} and notice that {A j ∩ E}, {A j ∩ EC} are covers of A ∩ E, A ∩ EC respectively. Then∑

j

µ0(A j) =
∑

j

[µ0(A j ∩ E) + µ0(A j ∩ EC)]

=
∑

j

µ0(A j ∩ E) +
∑

j

µ0(A j ∩ EC)

≥ µ∗(A ∩ E) + µ∗(A ∩ EC)

Hence by taking inf over all such covers

in f {
∑

j

µ0(A j)} = µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ EC)

As usual the oposite inequality follows from the subadditivity of the outermeasure and therefore we have equality.

Note by convention in f (∅) = ∞.

Theorem (Caratheodory Extension Theorem). Let (X,R, µ0) a pre-measure space. There is a smallest sigma algebra
containing R, call it A. Then

• There exists a measure µ : A→ [0,∞] that restricts to µ0 on R.

• If further there is a countable cover of X by sets of finite µ0 pre-measure then this measure µ is unique.

Proof. We have the outer-measure above that we then restrict to Caratheodory measurable sets.

Uniqueness: Let ν be another measure on A such that ∀E ∈ R ν(E) = µ0(E). Consider F ∈ A WLOG with finite
µ−measure (this is the point where we are using the µ0 sigma finitness because if F is infitire then we approximate
it by intersecting with finite measure sets that union to be the whole space and use continuitiy of measure to get the
measure in the limit). Take a collection of ring elements that covers F, {E j} then

ν(F) ≤
∑

j

ν(E j) =
∑

j

µ0(E j)

Hence ν(F) ≤ µ(F). Now take ϵ > 0 and let {E j} be a cover of F by ring sets such that∑
j

ν(E j) ≤ µ(F) + ϵ

Let E = ∪ jE j then by the finite meaesure of F we have that µ(E \ F) ≤ ϵ. Then

µ(E) = lim µ(∪n
j=1E j) = lim ν(∪n

j=1E j) = ν(E)

Hence
µ(F) ≤ µ(E) = ν(E) = ν(F) + ν(E \ F) ≤ ν(F) + µ(E \ F) ≤ ν(F) + ϵ → ν(F)

Product Measures
Given an algebra R we denote

Rσ = { countable unions of sets in R }

Rσδ = { countable intersections of sets in Rσ}

Lemma. Let (X,R, µ0) a pre-measure space where X ∈ R (R is an algebra). Then let µ∗ be the induced outermeasure.
For every E and every ϵ > 0 there is an S ∈ Rσ such that E ⊆ S and µ∗(S ) ≤ µ∗(E) + ϵ
There is also a T ∈ Rσδ such that E ⊆ T and µ∗(T ) = µ∗(E)
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proof

Let (X1, A1, µ1) and (X2, A2, µ2) be complete sigma finite measure spaces. Consider R =
{⋃n

k=1 Bk × B′k : Bk ∈ A1, B′k ∈ A2

}
,

the collection of finite unions of "rectangles" from the two measure space.

Lemma. R is an algebra
proof

Lemma. The following definies a premeasure on R,

µ0(
n⋃

k=1

Bk × B′k) =
n∑

k=1

µ0(Bk × B′k)

with base case given by
µ0(B × B′) = µ1(B)µ2(B′)

proof

Now we apply the two extension theorems to get an outer measure and then a unique measure given by the
restriction of this outer measure. This gives a measure µ : σ(R)→ [0,∞] (on the sigma algebra generated by R).

If we drop assumptions of sigma finiteness then this still goes through however we lose uniqueness. Some theo-
rems about product measures will also fail.

Theorems About Product Measures

Lemma. If E is measurable in X1 × X2 then

• Ey = {x ∈ X1 : (x, y) ∈ E} is measurable in X1 for a.e. y ∈ X2

• y 7→ µ1(Ey) is a measurable function on X2

•
∫

X2
µ1(Ey)dµ2(y) = (µ1 × µ2)(E)

proof

Theorem (Fubinis). If f : X1 × X2 → R is µ1 × µ2 measurable then

• f y : X1 → R, x 7→ f (x, y) is integrable on X1 a.e. y ∈ X2

• y 7→
∫

X1
f ydµ1 is an X2 integrable function

• ∫
X2

∫
X1

f ydµ1(x)dµ2(y) =
∫

x1×X2

f (x, y)d(µ1 × µ2)(x, y)
proof
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Decompositions

Signed Measures

Definition: A signed measure on a measurable space (X, A) is a function ν : A→ [−∞,∞] sotisfying

• ν takes at most one of the values ±∞

• ν(∅) = 0

• Countable additivity: Let {En} be a countable collection of pairwise disjoint sets in A, then we have that

ν(∪En) < ∞ =⇒
∑
|ν(En)| < ∞

and
ν(∪En) =

∑
|ν(En)|

Given a signed measure ν on a measurable space (X, A) then a measurable set E is

• positive if for every measurable set F ⊆ E we have ν(F) ≥ 0

• negative if for every measurable set F ⊆ E we have ν(F) ≤ 0

• null if for every measurable set F ⊆ E we have ν(F) = 0

The intersection of a positive and negative set is a null set.

Lemma. A countable union of positive sets is positive

Proof. Let {Ek} be a countable collection of positive sets, whose union is E. Then let F ⊆ E arbitrary. We
need to show it has positive ν−measure.

Let F1 = E1 ∩ F and Fi = F ∩ Ei \ ∪
n−1
j=1 F j, these are measurable, pairwise disjoint and Fi ⊆ Ei. But Ei is

positive hence Fi is positive. Thus by countable additivity:

ν(F) = ν(
⋃

i

Fi) =
∑

i

ν(Fi) ≥ 0

Hahn Decomposition
Lemma (Hahns Lemma). Given a signed measure space (X, A, ν), if a set has positive (finite) measure then there is a
positive set of nonzero measure contained in it i.e.

E measurable and 0 < ν(E) < ∞ =⇒ ∃A ⊆ E a positive set such that ν(A) > 0

Proof. If E is positive we are done. So assume E is not positive, hence there is some F ⊆ E such that ν(F) < 0.
Let m1 ∈ N be the smallest positive integer such that

∃F ⊆ E ν(F) ≤
−1
m1

Such an integer exists by hypothesis. Notice that from the definition

∀F ⊆ E ν(F) >
−1

m1 − 1
where the right is −∞ for m1 = 1. So let E1 be such that

E1 ⊆ E and ν(E1) ≤
−1
m1

Then inductively define mn and En as the smallest positive integer such that there is some set disjoint from the
previous Ei that has measure smaller that −1/mn and En is one such set.
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Case 1: Terminates after finitely many sets: Then

A = E \
n⋃

i=1

Ek

is positive (because by definition all subsets must have positive measure), moreover

ν(A) = ν(E) −
∑
ν(Ek) > 0

Becasue E is positive and each of the ν(Ek) < 0 =⇒ −ν(Ek) > 0. (this used the finiteness of the measure of E).

Case 2: Does not terminate: We get an infinite sequence of measurable stes {Ek} and again define

A = E \ ∪Ek

Again the measure of A is positive (as above) so it remains to show that all subsets have positive measure. So let
F ⊆ A measurable. Now we know that subsets of finite measure (signed) sets have finite measure hence |ν|(∪Ek) <
∞ so

−∞ < ν(∪Ek) ≤
∑
ν(Ek) ≤ −

∑ 1
mn

hence
∑ 1

mn
< ∞ so the tails go to zero so

F ⊆ A ⊆ E \
n−1⋃
k=1

Ek

which by definition of mn tells us ν(F) > −1
mn−1 → 0 in the limit. So ν(F) > 0 and A is positive.

Theorem (Hahn Decomposition Theorem). There is a positive set P and a negative set N wrt ν such that

X = P ∪ N & P ∩ N = ∅

Proof. WLOG we assume that ν < ∞ (ν can only take one of ±∞ and I assume the other case is similar).

There is a positive set with maximum measure: Let λ = sup{ν(E) : E is a positive set }. Notice that ν(∅) = 0
so there is at least one positive set. There are positive sets {Pn}n∈N such that ν(Pn) → λ, now define P = ∪Pn. By a
lemma above P is positive and hence P \ Pn is positive (its a subset).

ν(P) = lim
n→∞
ν(Pn ∪ P \ Pn) ≥ lim

n→∞
ν(Pn) = λ

Hence P has maximal ν measure. By our finiteness assumption also λ < ∞

X\P Is Negative: Let N = X \ P and suppose that N is not negative. i.e. there is some E ⊆ N such that ν(E) > 0,
then by Hahns Lemmathere is a positive set A ⊆ E ⊆ N such that ν(A) > 0 but then P ∪ A is positive and

ν(P ∪ A) = ν(P) + ν(A) > λ

A contradiction.

These P and N are called a Hahn decomposition of X.
Hahn decompositions are unique up to null sets.

Jordan Decomposition
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Definition: Let (X, A) be a measurable space with two measures ν1, ν2. These two measures are mutually
singular, denoted by ν1⊥ν2 if there are measurable sets A, B such that

X = A ∪ B, A ∩ B = ∅, ν1(A) = ν2(B) = 0

Theorem (Jordan Decomposition). Given a sign measure ν there is a unique pair of measures ν−, ν+ such that ν =
ν+ − ν− and ν+⊥ν−.

Proof. Take a Hahn decomposition for ν, call it X = P ∪ N, then

ν+(E) = ν(P ∩ E) ν−(E) = ν(N ∩ E)

ν+ is called the positive part or the positive variation. ν− is called the negative part or negative variation.

|ν|(E) = ν+(E) + ν−(E)

Gives a measure which we call the absolute variation.

Lemma.
|ν|(E) = sup

{∑
|ν(Ek)| : finite collections of pairwise disjoint covers of E

}
Lebesgue Decomposition

Definition: A signed measure ν on a measure space (X, A, µ) is absolutely continuous wrt µ, ν ≪ µ, iff

∀E ∈ A, µ(E) = 0 =⇒ ν(E) = 0

Lemma. If
∀ϵ > 0∃δ > 0 ∀E ∈ A µ(E) < δ =⇒ |ν(E)| < ϵ (2.1)

then ν ≪ µ. Moreover if |ν(X)| < ∞ then this is iff.

Proof. WLOG we can assume that ν is a measure (using the Jordan decomposition). Now assume

∀ϵ > 0∃δ > 0 ∀E ∈ A µ(E) < δ =⇒ |ν(E)| < ϵ

Let E be such that µ(E) = 0, then immediately |ν(E)| < ϵ for all ϵ, because µ(E) < δ for all δ. Hence |ν(E)| = 0.

Converse: Let |ν|(X) < ∞ and assume that ν ≪ µ. Assume for a contradiction that 2.1 does not hold. Then there
is some ϵ > 0 and a sequence of measurable sets {En} such that µ(En) < 2−n but ν(En) ≥ ϵ. Let

Fn =
⋃
k≥n

Ek F =
⋂
n∈N

Fn

Then Fn ↘ F and
µ(Fn) ≤

∑
k≥n

µ(Ek) ≤
∑
k≥n

2−k = 21−n

And by continuity of measure
µ(F) = lim µ(Fn) = 0

Hence by ν ≪ µ we get that ν(F) = 0 but by finiteness of ν we also have that

ν(F) = lim
n→∞
ν(Fn) ≥ lim inf

n→∞
ν(En) ≥ ϵ

A contradiction.
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Lemma. Let (X, A, µ) a finite measure space with a finite measure ν ≪ µ. Then there is a measurable function
f : X → [0,∞] such that ∫

X
f dµ > 0 ∧ ∀E ∈ A

∫
E

f dµ ≤ ν(E)
proof on white-
board, maybe
write the key
idea down again

Theorem (Radon-Nikodym). Given a sigma finite measure space (X, A, µ) with a signed measure ν such that |ν|(X) <
∞ and ν ≪ µ then there is a measurable function f : X → R such that

∀E ∈ A ν(E) =
∫

E
f dµ

Moreover f is unique (up to a set of measure zero).
proof on white-
board, maybe
write the key
idea down again

Theorem (Lebesgue Decomposition). Given a sigma finite measure space (X, A, µ) with a signed measure ν such that
|ν| is also sigma finite then there is a unique pair of signed measures νac, νsing such that

νac ≪ µ, |νsing| ⊥ µ, ν = νac + νsing

Proof. Again assume WLOG that ν is a measure. Let λ = µ + ν and observe that∫
gdλ =

∫
gdµ +

∫
gdν

for g a non-negative measurable function (immediate for simple functions and extend). λ is sigma finite and µ ≪ λ.
Applying Radon-Nikodym gives a non-negative measurable function f such that

µ(E) =
∫

E
f dλ

Let X+ = {x : f (x) > 0} and X0 = X \ X+. Let ν+(E) = ν(E ∩ X+) and ν0(E) = ν(E ∩ X0). Then

ν = ν0 + ν+

ν0 ⊥ µ:

µ(X0) =
∫

X0

f dλ = 0

ν(X+) = ν(X0 ∩ X+) = ν(∅) = 0

ν+ ≪ µ: Let µ(E) = 0 then
∫

E f dµ = 0 hence∫
E

dν =
∫

E∩X0

f dν +
∫

E∩X+
f dν =

∫
E∩X+

f dν = µ(E) = 0

Thus since f > 0 on X+ we must have that ν(E) = ν(E ∩ X+) = 0.

Uniqueness : Return if I feel.
uniqueness
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Differentiating Measures

Covering Lemmas
Lemma (Three Times Covering). Let B be a finite collection of closed (or open) balls in Rd, there exists a pairwise
disjoint subcollection B′ such that ⋃

B∈B

B ⊆
⋃

B′∈B′
3B′

where 3Br(y) = B3r(y)

Proof. We sequentially pick the balls with largest radius, then largest radius non-intersecting etc to get

B′ = {Br1 (x1), ..., BrN (xN)}

A collection of pairwise disjoint sets such that r1 > r2 ≥ ... ≥ rN .
Now we want to show that given an arbitrary Br(x) ∈ B \ B′ that it is in the three times enlargment of one of

the B′.
Because Br(x) < B′ there must be a ball in B′ with a larger radius, moreover there must be a smallest such i.e.

∃i ri+1 ≤ r ≤ ri (or i = N). Notice that ∃ j ≤ i Br(x)∩ Br j (x j) , ∅ (otherwise Br(x) ∈ B′). So let z ∈ Br(x)∩ Br j (x j)
and y ∈ Br(x) arbitrary then

|y − x j| ≤ |y − x| + |x − x j|

≤ |y − x| + |x − z| + |x − j − z|

≤ r + r + r j ≤ 3r j

Hence Br(x) ⊆ B3r j (x j)

Lemma (Five Times Covering). Let B be a finite collection of closed (or open) balls in Rd, such that

sup{r : Br(y) ∈ B} < ∞

there exists a pairwise disjoint subcollection B′ such that⋃
B∈B

B ⊆
⋃

B′∈B′
5B′

Proof. Let R = sup{r : Br(y) ∈ B}. For k ∈ N define

Bk = {B ∈ B : 2−kR < rad(B) ≤ 21−kR}

Inductively define B′k as the maximally pairwise disjoint subset of Bk that is also pairwise disjoint from B′j for j < k
(such a set exists by the axiom of choice). Now define

B′ =
⋃

k

B′k

Now take B = Br(y) ∈ B arbitrary. Then B ∈ Bk for some k and by maximality of B′k we have that there is some
B′ = Br′ (y′) ∈ ∪k

j=1B
′
j such that

B ∩ B′ , ∅

(if none intersected we could add B to B′k and contradict maximality). We also see that by definition

r ≤ 21−kR = 2 · 2−kR ≤ 2r′

Now using the argument from the three times covering lemma and r ≤ 2r′ we are done.

A Vitali covering of E ∈ Rd is a collection of closed balls B such that for every x ∈ E and every δ > 0 there is a
ball Br(y) ∈ B such that x ∈ B + r(y) and r < δ.
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Lemma (Vitali Covering). Given a set E ⊆ Rd of finite Lebesgue measure and a Vitali covering of E,B then there is a
countable collection of pairwise disjoint balls {Bk}k≥1 ⊆ B such tht

m

E \
⋃
k∈N

Bk

 = 0
proof is essen-
tially the same
as the others
I guess, went
through it on pa-
per

Lemma (Besicovitch Covering). Let B be a collection of balls in Rd and E the set of all centers of those balls. If

sup{r : Br(e) ∈ B} < ∞

then there are finitely many subcollections B1, ...,BN ⊆ B such that for each j B j is a pairwise disjoint collection of
balls and

E ⊆
N⋃

j=1

⋃
B∈B j

B

Differentiation of Measures
Given a borel measure µ on Rd that is finite on all compact sets we definie the upper an lower derivatives of µ at x ∈ Rd

respectively as

D̄µ(x) = lim sup
r→0+

µ(Br(x))
m(Br(x))

Dµ(x) = lim inf
r→0+

µ(Br(x))
m(Br(x))

If both are finite and equal then we call them the derivative, Dµ(x) or dµ
dm , of µ at x.

Lemma. D̄µ(x) and Dµ(x) are Borel measurable.

Proof.

Upper: For every δ > 0 we define

sδ(x) = sup
0<r<δ

µ(Br(x))
m(Br(x))

Notice that D̄µ(x) is the limit as δ→ 0 hence if we can show this function is measurable we are done.
Let a > 0 (WLOG because the other cases are trivial). We will show that {x : sδ(x) > a} is open. So let

x ∈ {x : sδ(x) > a}

sδ(x) = sup
0<r<δ

µ(Br(x))
m(Br(x))

> a

=⇒ ∃a′ > a, t ∈ (0, δ)
µ(Bt(x))
m(Bt(x))

> a

Now let ρ > 0 such that ( t
t+ρ )

da′ > a and ρ + t < δ. If y ∈ Bρ(x) then by monotonicity (and triangle inequality)

µ(Bt+ρ(y)) ≥ µ(Bt(x)) > a′m(Bt(x)) = a′(
t

t + ρ
)dm(Bt+ρ(y)) > am(Bt+ρ(y))

(equality is from Lebesgue measure independence of location and then scaling the ball). Hence

µ(Bt+ρ(y))
m(Bt+ρ(y))

> a

For every such t, ρ hence the sup, so sδ(y) > a for every y ∈ Bρ(x). Thus the set is open and hence measurable.

Lemma. If E ⊆ Rd Borel such that ∀x ∈ E D̄µ(x) ≥ a > 0 then µ(E) ≥ am(E)
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Proof. Let E be Borel such that D̄µ(E) ≥ a. WLOG assume E is bounded (finite measures). Take an 0 < ϵ < a
and a U open such that E ⊆ U and µ(E) < µ(E) + ϵ. Define

B = {B = Br(x) ⊆ U : µ(B) ≥ (a − ϵ)m(B)}

Since D̄µ(E) ≥ a B forms a Vitalli covering of E.
thats going to take a bit more convincing

Apply the Vitali covering Lemma to get a pairwise disjoint subcollection {Bk}k∈N that cover E up to a set of
measure 0. Then

(a − ϵ)m(E) ≤
∑

k

(a − ϵ)m(Bk) ≤
∑

k

µ(Bk) ≤ µ(U) ≤ µ(E) + ϵ → µ(E)

Lemma. If µ ≪ m and E ⊆ Rd Borel such that ∀x ∈ E Dµ(x) ≤ a > 0 then µ(E) ≤ am(E)
proof is similar
to the previous

Theorem. µ is differentiable m-a.e. and for any E Borel there is a measure zero Borel set Z such that

µ(E) =
∫

E
Dµ(x)dm(x) + µ(E ∩ Z)

proof

Proof. WLOG assume µ ≪ m and that µ is finite. Given a < b ∈ R define

Fa,b = {x : Dµ(x) < a < b < D̄µ(x)}

F∞ = {x : D̄µ(x) = ∞}

By the previous lemmas we then have

m(F∞) ≤
1
a
µ(F∞)

for all a > 0 and so m(F∞) < ∞ (by finitness of µ).

A Borel measure µ satisfies the Vitali property if for any finite measure E and every Vitali covering B of E there
is a countable subcollection {Bi} ⊆ B of pairwise disjointn balls such that

µ

E \
⋃
k∈N

Bk

 = 0

Theorem. Given two Borel measures that are finite on compact sets µ, ν such that ν satisfies the Vitali property we
have that µ is differentiable wrt ν, i.e.

dµ
dν

(x) = lim
r→0+

µ(Br(x))
ν(Br(x))

exists ν-a.e..
Moreover for any E Borel there is a ν-measure zero Borel set Z such that

µ(E) =
∫

E

dµ
dν

(x)dν(x) + µ(E ∩ Z)

Finally if µ satisfies the Vitali property too then Z = {x : dµ
dν (x) = ∞}.

Anti-Derivatives
Given an integrable function f : Rd → R we call x ∈ Rd a Lebesgue point of f iff

lim
r→0+

m(Br(x))−1
∫

Br(x)
| f (y) − f (x)|dm(y) = 0

The Lebesgue set is the collection of all such points.
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Theorem. For such an f we have that a.e. x is a Lebesgue point and

lim
r→0+

m(Br(x))−1
∫

Br(x)
f (y)dm(y) = f (x)

proof

Lemma. If A is Lebesgue measurable then

lim
r→0+

m(A ∩ Br(x))
m(Br(x))

= 1 a.e. x ∈ A

lim
r→0+

m(A ∩ Br(x))
m(Br(x))

= 0 a.e. x ∈ Rd

proof



34 CHAPTER 2. GENERAL MEASURES



Todo list

o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o construction of non-measurable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o prrof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
o section on their equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
o well definedness of all the integral definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
o additivity, monotone, triangle inequality for integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
o proof of completeness of Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
o Proof of the density of certain functions in Lp. Seperable for general Lp? . . . . . . . . . . . . . . . . . . . 20
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
o proof on whiteboard, maybe write the key idea down again . . . . . . . . . . . . . . . . . . . . . . . . . . 29
o proof on whiteboard, maybe write the key idea down again . . . . . . . . . . . . . . . . . . . . . . . . . . 29
o uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
o proof is essentially the same as the others I guess, went through it on paper . . . . . . . . . . . . . . . . . . 31
o thats going to take a bit more convincing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
o proof is similar to the previous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
o proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

35


	Lebesgue Measure
	Measureable Sets
	Cubes
	Outer Measure
	Approximation of Sets
	Littlewood Principles
	Non-Measurable Sets

	Measureable Functions
	Integration
	Approximation of Measurable Functions
	Reimann Integral


	General Measures
	Measures
	Outer Measures
	Metric Outer Measures

	Measurable Functions
	Approximating Measurable Functions

	Integration
	Integration Theorems
	Lp Spaces
	Inequalities

	Extension Theorem
	Product Measures

	Decompositions
	Signed Measures
	Hahn Decomposition
	Jordan Decomposition
	Lebesgue Decomposition

	Differentiating Measures
	Covering Lemmas
	Differentiation of Measures
	Anti-Derivatives



